How to Use CSA Cement for Rapid Production

Jeffrey Girard, P.E.
The Concrete Countertop Institute

December 30, 2014

Portland Cement

- Most common binder for all forms of concrete
 - Inexpensive, readily available
 - Long working time
 - Good long-term strength
- Manageable disadvantages
- Slow reacting (initial set 1-2 hours)
- Slow strength gain (days to weeks)
- Shrinkage prone from excess mix water
- Vulnerable to efflorescence and ASR (alkali silica reaction)

Portland Cement Chemistry

- Primary Reaction Products
 - Calcium Silicate Hydrates (CSH) *STRONG, glue*
 - Calcium Hydroxide Ca(OH)₂ (CH) WEAK, troublemaker
 - Ettringite in various forms, some neutral, some detrimental
- Uses mix water slowly and incompletely
 - $\bullet\,$ Hydration reactions only use a portion of the mix water
 - Most mix designs depend on higher w/c ratios for workability (0.30 to 0.40)
 - Slower reaction rates + higher free-water content = greater shrinkage

Portland Cement Chemistry

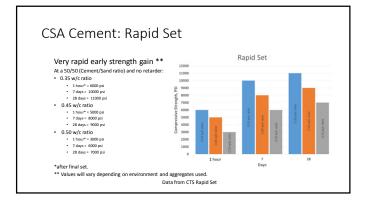
- Pozzolans (supplementary cementitious materials)
 - Minerals used as Portland cement replacement
 - \bullet React with the weak CH to form more strong CSH
 - \bullet Strength gain from pozzolans is generally delayed, long term

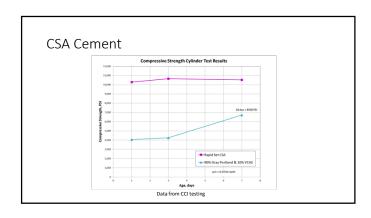
Form Bookland Committee Association

CSA Cement

- A different type of cement with different chemistry
- CSA stands for Calcium Sulfoaluminate

CSA Cement Chemistry


- Primary Reaction Products
 - Ettringite
 - Amorphous Al(OH)₃
 - Monosulfate
- Uses mix water more quickly and completely
 - Gains strength more rapidly
 - \bullet Needs more mix water to sustain the rapid chemical reaction (.36 .40 w/c)
 - Reduced porosity and lower shrinkage


CSA Cement Chemistry

- CTS Rapid Set is the only CSA cement available in North America that is a true stand-alone hydraulic cement
 - Not blended with Portland cement
 - Pozzolans are not used

 - Single cement yields very high early strengths
 Different blended chemistry from other CSA products

CSA Cement Rules

- Use as a 100% Portland cement replacement
- Do not use with pozzolans
 - No weak calcium hydroxide CH is produced, so there is nothing for pozzolans to consume or react with
- Minimum W/C ratio: 0.35
 - Recommended range: 0.36 0.40
- Wet curing duration: 1-3 hours
- Get extra working time via chemical and thermal retardation

Extra working time with CSA cement

- Citric acid is a chemical retarder that delays initial set
- Working dose range 0.1% 0.4%
 - Maximum dose 1%
- Each 0.1% dose adds 5 15 minutes of working time at around 70°F (21°C). This is very dependent upon mix design and is *only a rough guide*.
- Higher doses add working time but slow early strength gain
- Higher temperatures reduce delay
- Citric acid is readily available online or in health food stores

Extra working time with CSA cement

- Chemical retardation is improved by chilling the concrete
 - Chill the concrete with ice or cold water
 - \bullet Concrete at 50°F (10°C) reacts much slower
 - A citric acid dose of 0.4% in CSA based concrete at 50°F (10°C) has a working time of about 1 hour.

Cooling with Ice

- Ice is part of mix water, so final w/c ratio is maintained
- Chilling concrete extends working time without lingering after-effects. Once the concrete warms up it sets and gains strength at faster rate.
- High doses of chemical retardation extend working time but also delay strength gain (hangover effect).

Cooling with Ice

- CCI Mix Calculators all have integrated Ice Cooling Calculation module
- Ice cooling calculator makes it easy to achieve target mix temperatures without fear of using too much ice (or too little).

The Concrete Countertop Institute ICE Cooling Calculator Crystof 8 267 the Counter Countering Institute Lice Acquire Institute Initial Temperature Topicine (Counter A) 188 7 Temperature Topicine (Counter A) 189 7 Temperature Topicine (Counter A) Topicine (Counter

0.0 bs
of Mixture: 81 **
ure should be between 50F and 60F
be within 2 to 4 degrees of calculated estimate.

CCI's Ice Cooling Calculator

Ice Cooling	Calculator
Copyright @ 2014 The Concrete Country	
Initial Ten	perature
Dry Ingredients (Cement All)	85 🕆
Wet Ingredients (Water, Polymer)	75 'F
Mist/Fac	e Coat
loe as water substitute:	0.8 lbs
Final Temperature of Vixture:	50 ·F
Backer	
lce as water substitute:	4.5 bs
Final Temperature of Mixture:	50 tr
Target Temperature should	be between 50F and 60F

CSA Cement vs. CSA Additive

- There is much confusion in the concrete countertop industry about CSA additives that are blended with Portland cement in complex mix designs.
- Buzzi Unicem, Ultimax Qwix, etc.
- Ultimax Qwix no longer exists.

Portland Cement Chemistry

- Manufacturing cement with different proportions of primary compounds yields different types of cement (Type 1, Type 3, etc).
- Type 1 is most common (aka OPC, GU, etc)
- White is very similar to gray except for very low iron content
- Exact composition of a particular brand of PC varies due to:
 - Available raw ingredients
 - Manufacturer's "recipe"
 - Intended use
 - Batch-to-batch random variations

Portland Cement Chemistry

- PC Chemistry varies
 - Cement type
 - Brand
 - Location
 - Batch
 Season

Type of portland cement	Chemical composition, %						Potential compound composition,%			Blaine		
	\$iO _x	ALO,	Fe ₂ O ₃	CaO	MgO	50,	Na ₂ O eq	c,s	C,S	C,A	C,AF	fineness m\kp
l (min-max) l (mean)	18.7-22.0 20.5	4.7-6.3 5.4	1,5-4,4	63.9	0.7-4.2 2.1	1.8-4.6 3.0	0.11-1.20	40-63 54	9-31 18	6-14 10	5-13 8	300-421 369
Ir" (min-max) Ir" (mean)	20.0-23.2	3.4-5.5 4.6	2.4-4.8 3.5	60.2-65.9 63.8	0.6-4.8 2.1	2.1-4.0	0.05-1.12	37-68 55	6-32 19	2-8 6	7-15 11	318-480 377
II (min-max) III (mean)	18.6-22.2 20.6	2.8-6.3 4.9	1.3-4.9	63.4	0.6-4.6	2.5-4.6 3.5	0.14-1.20 0.56	46-71 55	4-27 17	0-13	4-14 8	390-644 548
IV (min-max) IV (mean)	21.5-22.8 22.2	3.5-5.3 4.6	3,7-5.9 5.0	62.0-63.4 62.5	1.0-3.8	1.7-2.5	0.29-0.42	37-49 42	27-36 32	3-4	11-18 15	319-360 343
V (min-max) V (mean)	20.3-23.4	2.4-5.5 3.9	3.2-6.1 4.2	61,8-66.3 63.8	0.64.6	1.8-3.6 2.3	0.24-0.76	43-70 54	11-31	0-5 4	10-19	275-430 373
White (min-max) White (mean)	22.0-24.4 22.7	2.2-5.0 4.1	0.2-0.6	63.9-68.7 66.7	0.3-1.4	2.3-3.1	0.09-0.38	51-72 63	9-25 18	5-13 10	1-2	384-564 482

• Chemistry variations may not affect PC based concrete, but will have an unknown and possibly negative effect on PC + CSA blends.

CSA Cement Chemistry

Actually, calcium sulfoaluminate is called ye'elimite (C₄A₃S) and is the basis for what we know as CSA cement and CSA additive.

- "Pure" CSA = ye'elimite
- Ye'elimite is never used by itself

Calcium Sulfoaluminate Variations:

- Cement additive (CSA additive from Buzzi Unicem)
- Stand-alone cement (CSA cement from CTS Rapid Set)

CSA vs Portland Cement

	Portland cement (OPC)	Calcium sulfoaluminate cement (CSA)
Main phases *	C ₃ S, C ₂ S, C ₃ A, C ₄ AF	$C_4A_3s = ye'elimite,$ C_2S, CA, C_2AS
Raw materials	limestone + clay	limestone, clay, anhydrite
Synthesis temperature	≈ 1450 °C	≈ 1250 °C
CO ₂ release from raw materials	C ₃ S: 1.80 g/ml C ₃ S	C ₄ A ₃ s: 0.56 g/ml C ₄ A ₃ s
Grindability of clinker	medium	very easy
Gypsum addition	≈ 4-8 M%	≈ 20-25 M%
w/c for complete hydration	≈ 0.4	≈ 0.6
Hydration products	C-S-H phases, Ca(OH) ₂ , ettringite	ettringite, monosulfate, amorphous Al(OH) ₃

CSA Cement Additive

Calcium Sulfoaluminate Cement Additive

- Must be blended with Portland cement
- CSA additive (Buzzi Unicem's "CSA Cement") used as a set accelerator and early strength booster for PC based concrete
- \bullet Typical doses range from 10-60% CSA additive replacement for PC
 - Lower CSA doses give more working time but minimize early strength gain
 Higher CSA doses increase early strength but shorten set time

Buzzi Unicem CSA

- Portland Cement Additive
 - Faster set with elevated early strength gains

Buzzi CSA	Set Time	3 Hrs. (psi)	24 Hrs. (psi)	28 Days (psi)
20%	65min.	N/A	3830	5960
30%	32 min.	990	1580	5740
40%	23 min.	1630	2220	5700
50%	18 min.	2790	4130	5630
60%	13 min.	3530	4360	6400
100%	11 min.	3720	5175	8700

Data from Buzzi Unicem

CSA Cement Additive Considerations/Drawbacks

Final properties, ultimate performance and durability highly dependent upon Portland cement chemistry and CSA dosing

• Using multiple reactive ingredients together increases complexity exponentially and makes undesired reactions and detrimental effects more likely

- Makes concrete mix design more complicated:
 What w/c is appropriate?

 - Should pozzolans still be used?If so, which ones are better?

 - And at what dose?
- End-user becomes responsible for formulation and QC
- Resulting concrete still more vulnerable to shrinkage, sulfate attack, etc.

Reasons you might not want to use CSA cement

- Availability
- Cost
- You need pure white
- (Note that you can use CSA-based grout to fill pinholes in PC-based concrete.)

CSA Cement Resource

CTS Rapid Set manufactures CSA cement

- www.ctscement.com
- Primary US distributors:
 Whitecap

 - Home Depot

CSA Cement Resource

CTS Rapid Set Products (a few of many)

CSA cement "Purple bag"
 100% CSA cement
 Available from Whitecap
Great for 100% from-scratch mix designs

Cement All "Blue bag"
 Blend of fine sand and CSA cement
 Available from Home Depot and Whitecap
Perfect for GFRC

CCI's GFRC Mix Calculator for Cement All

• Tailored for CTS Rapid Set's Cement All

How to Use CSA Cement with CCI Mix Calculators Gravel Mix Set w/c ratio to 0.36 – 0.40 • Set Gray Cement to 100% (CSA cement isn't really gray) • Set Pozzolan to 0% (make a note CSA cement is used) • Use Citric Acid at 0.1% dose to 0.4% dose Use Citric Acid at 0.1% dose to 0.4% dose Propert Number | Concept | 1700 cc 18 | 100 cc | 100

Qι	uestions & Resources	
Inclu Deliv Price	Mix Calculators linate mixing mixtakes and inconsistencies in Precast and GFRC mixes. udes: Sample colors, Ice Calculator, metric version. vered instantly to your email indox. ed at 579 istmas 2014 SALE: Save 50% I Just \$39.50 Ends TODAY December 30, 2014 at 11:59pm Eastern.	
	Type this into your browser now: bit ly/gfrcmiscalc 2014 or bit.ly/precastmiscalc 2014 or bit.ly/crichistmasSale 2014 Or check your inbox for one-click links.	
	You will also receive a link in a later email to access this seminar's recording. Contact: info@concretecountertopinstitute.com or 888-386-7711	

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without permission of the speaker is prohibited.

© The Concrete Countertop Institute, LLC 2014. All rights reserved.

30